Beyond the Genome: Mastering Variant Calling and Annotation from Next-Gen DNA-seq Data 🧬
NGS variant calling GATK transforms raw DNA-seq into clinically actionable insights through bioinformatics analysis DNA-seq data. Professionals master VCF file interpretation and clinical genomics pipeline construction to deliver bioinformatics job skills DNA demanded by Illumina, Broad Institute, and diagnostic labs. This 10-step workflow—from FASTQ to ACMG-classified variants—powers 80%+ of clinical genomics reporting.
Executable code and production patterns follow industry standards (HGVS nomenclature, dbNSFP annotations).
Why Variant Calling Drives Genomic Impact
NGS generates 100GB+ per sample, but clinical value requires:
text
30x WGS → 4-6M raw variants → 20-50 pathogenic variants
Key applications:
- Rare disease: ExAC/gnomAD filtering → novel loss-of-function.
- Cancer: Somatic calling (Mutect2) + CNA analysis.
- Pharmacogenomics: CYP2C19∗2 → warfarin dosing.
NGS Variant Calling GATK: Complete Pipeline
Gold-standard germline workflow (100 samples, WGS):
text
# 1. Alignment (BWA-MEM, GRCh38)
bwa mem -R '@RG\tID:sample1\tSM:sample1' ref.fasta R1.fastq R2.fastq | \
samtools sort -o sample1.bam
# 2. Picard MarkDuplicates + BQSR
gatk MarkDuplicatesSpark -I sample1.bam -O sample1.dedup.bam -M metrics.txt
gatk BaseRecalibrator -I sample1.dedup.bam -R ref.fasta --known-sites dbsnp.vcf
gatk ApplyBQSR -I sample1.dedup.bam -bqsr-recal-file recal.table -O sample1.final.bam
text
# 3. HaplotypeCaller (GVCF mode)
gatk HaplotypeCaller -R ref.fasta -I sample1.final.bam -O sample1.g.vcf -ERC GVCF
text
# 4. GenomicsDB + GenotypeGVCFs (cohort calling)
gatk GenomicsDBImport -R ref.fasta --genomicsdb-workspace-path cohort_db *.g.vcf.gz
gatk GenotypeGVCFs -R ref.fasta -V gendb://cohort_db -O cohort.vcf.gz
VCF File Interpretation: From Raw to Actionable
VCF mastery separates analysts from clinicians:
text
# Sample VCF line breakdown
chr1 123456 rs123 A G 99 PASS AF=0.01;DP=150;AD=3,147 GT:DP:AD:GQ 0/1:150:3,147:99
Field
Meaning
Clinical Action
GT
0/1=het
Reportable if pathogenic
DP
150x depth
Sufficient coverage
AD
3ref,147alt
98% alt allele balance
GQ
Phred 99
>99% genotype confidence
AF
1% population
Rare variant flag
text
# Production filtering
bcftools view -i 'F_MISSING<0.1 & F_DP>20 & QUAL>30' cohort.vcf.gz | \
bcftools annotate --set-id +'%CHROM_%POS_%REF_%ALT'
Image suggestion: VCF parsing workflow to ACMG classification. Alt text: "NGS variant calling GATK results in VCF file interpretation for clinical genomics pipeline."
Clinical Variant Annotation Pipeline
Production annotation stack (10M variants → 50 reportable):
text
# 1. VEP (most comprehensive)
vep -i cohort.vcf --assembly GRCh38 --dir_cache ~/.vep \
--fasta ref.fasta --offline --everything --symbol
# 2. SnpEff (fastest)
java -jar snpEff.jar GRCh38.99 cohort.vcf > cohort.ann.vcf
# 3. ANNOVAR (dbNSFP integration)
table_annovar.pl cohort.vcf humandb/ -buildver hg38 \
-out cohort_ann -remove -protocol refGene,clinvar,dbnsfp35a \
-operation g,f,f -nastring '.'
Output fields:
text
CADD_PHRED>20 → Deleterious
SIFT<0.05 → Damaging
PolyPhen=DLF → Probably damaging
ClinVar=Pathogenic → Tier 1
Production Clinical Genomics Pipeline
SLURM + Snakemake for 1,000 samples:
text
rule all:
input: expand("variants/{sample}/final.vcf.gz", sample=SAMPLES)
rule haplotypecaller:
input: "bams/{sample}.final.bam"
output: "gvcf/{sample}.g.vcf.gz"
resources: mem_mb=16000
shell:
"""
gatk HaplotypeCaller -R ref.fasta -I {input} -O {output} -ERC GVCF
"""
Unique Insight: Joint-Genotyping vs Per-Sample—Deep dive: Cohort calling boosts rare variant sensitivity 15-20% via population priors; most tutorials ignore phase-aware calling with WhatsHap.
Advanced: Structural Variant + Somatic Calling
text
# SV calling (cuteSV + SURVIVOR)
cuteSV sample.bam ref.fasta sv.ben -s 30 -t 16
# Somatic (Mutect2 tumor-normal)
gatk Mutect2 -R ref.fasta -I tumor.bam -I normal.bam -O tumor_normal.unfiltered.vcf
Building Bioinformatics Job Skills DNA
2026 hiring requirements:
text
"Must: GATK4 HaplotypeCaller, VEP/ANNOVAR annotation,
4+ VCF fields interpretation, DRAGEN/Parabricks experience preferred"
Portfolio checklist:
- WGS germline pipeline (30x, 100 samples).
- Trio analysis (de novo detection).
- ACMG classification workflow.
- GitHub with Dockerized pipeline.
Production Deployment Patterns
text
# Nextflow for cloud portability
process VARIANT_CALLING {
container 'broadinstitute/gatk:4.5.0.0'
input: file bam from CHANNEL_BAMS
output: file "*.g.vcf.gz" into GVCF_CH
script: