

LSSSDC (GOVT. OF INDIA) CERTIFIED 28 CREDIT COURSE

BIOINFORMATICS ANALYST

Empowering Your Career through Practical Training and Industry Recognition

www.dromicsedu.com

Why DrOmics Labs

2

3

5

6

Strategic Partnership:

- MoU with Andra **Pradesh** Government for Internship.
- Most Prestigious Institute CDFD Hyderabad, and IIM Lucknow as the **Incubation Hub** for Dr. Omics Labs.
- Authorized Training partner of LSSSDC

Certifications Achieved

- **MSME** Certification
- Recognized by Startup India
- **ISO** Certification **Attained**
- LSSSDC (Skill India) certified

Successfully

trained over 15000 students

hailing from diverse corners of the world

Becoming professionals' top choice:

more than. 20000 LinkedIn followers

Research Grants

- AWS
- Illumina
- Department Of Science & **Technology**

(Govt. of India)

Diverse internships and courses

Our programs cover NGS Data Analysis, CADD, **Pharmacogenomic** s, and Machine **Learning** for Biological Data We offer live virtual training with expert guidance.

Key Features of Our Course:

- 1.28 Credit worth Comprehensive Learning: Our intensive course is equivalent to 28 Indian Education System Credits, ensuring you receive in-depth training and expertise in bioinformatics.
- Practical Approach: We believe in learning by doing. Our curriculum emphasizes hands-on experience, allowing
 you to apply theoretical concepts to real-world scenarios, enhancing your problem-solving abilities and practical
 skills.
- 3. Exclusive Interview Opportunities: As part of our commitment to your success, we provide opportunities for you to interview with well-established companies in the bioinformatics domain. Gain insights into industry practices and secure your dream job.
- 4. Third-Party Examination: To validate your expertise, we offer a third-party examination option. For a nominal fee of INR1650/-, you can opt for this examination to further enhance your credentials and stand out in the competitive job market.
- 5. **Government of India Recognized Certificate:** Upon successful completion of the course, you will receive a prestigious certificate recognized by the Government of India, affirming your proficiency in bioinformatics analysis.
- 6. Guidance for Research Publication: We understand the importance of contributing to the field of bioinformatics. Our expert faculty members provide guidance and support for your research endeavors, facilitating publication in reputable journals and conferences.

BIOINFORMATICS BASICS: CONCEPTS AND APPLICATIONS

- Introduction to Bioinformatics and its Applications in Life Sciences
- Types of sequencing and NGS introduction
- Introduction to NGS applications

MODULE: 2

BIOINFORMATICS DATABASES: AN INTRODUCTORY GUIDE

- Overview of NCBI and Its Resources
- NCBI Gene Database Exploration
- UCSC Genome Browser: Overview
- UCSC Genome Browser Hands-on Exercises
- Introduction to PubMed Database
- Overview of ClinVar Database
- KEGG Database: Overview and Practical Exercises
- Protein Databases (UniProt)
- Protein Databases (PDB)
- Introduction to Ensembl Database

COMPUTATIONAL TOOLS IN BIOINFORMATICS: APPLICATIONS AND USES

- Introduction to Online BLAST with Practical Exercises
- Setting Up Standalone BLAST and Hands-on Exercises
- Advanced Standalone BLAST Applications and Exercises
- Multiple Sequence Alignment Using CLUSTALW
- Multiple Sequence Alignment Using MEGA

MODULE: 4

LINUX FOR BEGINNERS: A PRACTICAL GUIDE

- Introduction to Linux: Overview and Installation
- Essential Linux Commands for Beginners
- Advanced Linux Command-Line Techniques
- Managing Packages in Linux
- Bash Scripting, AWK and SED

PYTHON ESSENTIALS FOR BIOINFORMATICS

Installation and Environment Setup
Data Types in Bioinformatics Computing
String Handling for DNA and Protein Sequences
Efficient Data Structures for Biological Data
Control Structures for Genome Data Processing
Functions for Automating Bioinformatics Tasks
Importing, Exporting, and Handling Biological Files
Data Manipulation for Sequence and Expression Analysis
Visualization of Genomic and Proteomic Data
Biopython for Sequence and Structural Analysis

• Visualizing Biological Data with R

R PROGRAMMING FOR BIOLOGICAL DATA ANALYSIS

Getting Started with R for Bioinformatics
Understanding Data Types in R
Efficient Data Structures for Genomic Data
Importing, Exporting, and Handling Biological Data
Control Structures for Data Processing in R
Functions for Automating Bioinformatics Workflows
Managing and Utilizing R Packages for Analysis
Sequence Analysis with Bioconductor
Data Manipulation for Genomic and Expression Data

VARIANT CALLING PIPELINE: A DNA-SEQ APPROACH

Introduction to NGS and DNAseq
Basic Terminologies in NGS
Understanding of SRA database
Installing Tools in Linux for Variant Calling
Quality Control of Reads
Trimming and Filtering Reads
Genome Indexing and Read Alignment
Variation calling using GATK
Predicting Variant Effects
Variation Visualization (IGV)

REFERENCE-GUIDED RNA-SEQ: A COMPLETE ANALYSIS WORKFLOW

- Introduction to RNA-seq and Key Terminologies
- Setting Up Tools in Linux for Gene Expression Analysis
- Quality Control and Read Trimming
- Genome Indexing and Read Alignment
- Data Normalization Using Cufflinks
- Merging Data and Identifying Differentially Expressed Genes
- Interpretation of DEG Results
- Annotation of Differentially Expressed Genes
- Functional and Pathway Enrichment Analysis
- Network Analysis of Gene Interactions

• Enrichment Analysis of DEGs

DE NOVO RNA-SEQ: TRANSCRIPTOME ASSEMBLY AND ANALYSIS

• Setting Up Tools for De Novo RNA-seq(Trinity) • Setting Up Tools for De Novo RNA-seq(RSEM/edgeR/Assembly-stats) • Data Downloading and Quality Control • Transcriptome Assembly creation • Estimating Abundance Counts • Generating Count Matrix and Identifying DEGs • Performing BLAST Analysis • Interpretation of DEG Results • Annotation of Differentially Expressed Genes

TARGETED MICROBIOME PROFILING: A METAGENOMIC APPROACH

Introduction to Metagenomics Analysis
Setting Up Tools for Metagenomics
Data Downloading and Preprocessing
Quality Control and Read Trimming
Importing Data into QIIME2
Quality Assessment Using DADA2
Phylogenetic Diversity Analysis of Microbial Communities
Taxonomic Classification of Sequences
Visualization with Krona Plot
Phylogenetic tree construction using MEGA

• Heatmap Generation for DEG Representation

MICROARRAY-BASED GENE EXPRESSION PROFILING

Introduction to Microarray Technology- Part1
Introduction to Microarray Technology-Part2
Data Downloading and Preprocessing
Microarray Processing Pipeline up to Normalization
Differential Gene Expression Analysis in Microarray
Annotation of Differentially Expressed Genes
Enrichment Analysis of DEGs
Network Analysis of Gene Interactions
Visualization with Volcano Plot

INTRODUCTION TO MACHINE LEARNING IN BIOINFORMATICS

- Fundamentals of Machine Learning for Genomic Data
- Linear Models and Nearest Neighbors for Pattern Recognition
- Probabilistic Machine Learning Concepts and Applications
- Support Vector Machines SVM Theory and Implementation
- Naïve Bayes Classifier Fundamentals and Bioinformatics Use Cases
- Decision Trees and Random Forest Interpretable ML Models
- Logistic Regression for Predictive Analysis in Bioinformatics
- Clustering Algorithms for Unsupervised Learning
- Validation Techniques for Machine Learning Models
- Machine Learning for Biomedical Image Analysis

DATA PREPARATION AND STATISTICAL ANALYSIS IN BIOINFORMATICS

- Introduction to Statistical Methods for Bioinformatics
- Descriptive Statistics and Data Structures
- Correlation and Regression Analysis for Genomic Data
- Probability and Bayes Theorem in Bioinformatics
- Sampling Techniques and Distribution Theory
- Hypothesis Testing for Data Analysis
- Statistical Tools for Data Management, Analysis, and Visualization
- Inferential Statistics for Biological Data Interpretation
- Interpreting Statistical Outputs for Decision Making
- Practical Applications of Statistical Methods in Bioinformatics

MODULE: 14

BASICS OF ALGORITHM DEVELOPMENT AND IMPLEMENTATION

- Program Design: Principles and Methods
- Basic Structures for Algorithm Development
- Efficient vs Naïve Algorithms
- Structured Programming and Divide and Conquer
- Object -Oriented Approaches and Greedy Algorithms

AWS- CLOUD COMPUTINGCLOUD COMPUTING FOR GENOMICS (AWS)

- Introduction to AWS
- Introduction to Compute Storage Databases
- Introduction to AWS Services NetworkingSecurity
- Deployment Strategies on AWS
- Management Tools for Bioinformatics Workflows on AWS

MODULE: 16

SQL FOR BIOINFORMATICS

- Basic SQL Syntax and Data Types
- Relational Databases and Data Operations
- SQL for Data Import, Export, and Manipulation
- Working with SQL Files and Query Execution
- SQL Workbench for Bioinformatics Data Analysis

CHEMINFORMATICS IN BIOINFORMATICS

- Drug Discovery and Development Process: Understanding QSAR Principles
- Introduction to Drug Discovery Process
- Role of Computational Methods
- Utilizing Biological Databases and GCP Standards
- Chemical Structure Visualization
- Visual Representation of Biological Processes and Structures in Data Analysis
- Biomolecules- Properties and function
- Molecular Docking and Molecular Dynamics
- Pharmacophore Modeling
- Pharmacophore Modelling applications

EMPLOYABILITY SKILLS

MODULE: 19

WORK MANAGEMENT

MODULE: 20

MANAGE YOUR WORK TO MEET REQUIREMENTS

MODULE: 21

WORK EFFECTIVELY WITH COLLOGUES

MODULE: 22

BUILD AND MAINTAIN RELATIONSHIP AT

WORKPLACE

MODULE: 23

BUILD AND MAINTAIN CLIENT SATISFACTION

MODULE: 24

RESEARCH PUBLICATION GUIDANCE

Join Us in Shaping the Future of Bioinformatics!

Embark on a journey of discovery and innovation with our LSSSDC certified Bioinformatics Analyst course. Whether you're a seasoned professional or a recent graduate, our program caters to individuals at all stages of their career. Take the first step towards a rewarding career in bioinformatics and unlock a world of opportunities.

Why Choose Our Course?

- 1. Accredited Certification: Our program is certified by the Life Sciences Sector Skill Development Council (LSSSDC), ensuring that your credentials are recognized and respected by industry professionals worldwide.
- 2. **Expert Faculty:** Learn from seasoned experts in bioinformatics analysis who bring realworld experience and cutting-edge insights to the classroom.
- 3. **Hands-On Learning:** Gain practical skills through interactive workshops, case studies, and projects that simulate real-life scenarios, allowing you to apply theoretical knowledge to practical applications.
- 4. **Comprehensive Curriculum:** Covering key topics such as sequence analysis, genomics, proteomics, and more, our curriculum is meticulously crafted to provide you with a well-rounded understanding of bioinformatics principles and techniques.
- 5. Career Support: Receive personalized career guidance and support from our dedicated team, including resume building, interview preparation, and job placement assistance, to help you kickstart your career in bioinformatics.
- 6. **Networking Opportunities:** Connect with fellow aspiring bioinformatics analysts, industry professionals, and mentors to expand your professional network and stay updated on the latest trends and developments in the field.

+91 93108 70544

www.dromicsedu.com

602/e, W No 3, G/f, L/side, Seqno-m, H 3/727 Gadaipur, New Delhi, South-West Delhi-110030

OUR CERTIFICATIONS & GRANTS

Thank you!

